

Product Manual

Product Name T4 DNA Ligase

Source Recombinant expression in Escherichia coli

Catalog Number CSB-DEM049

Physical Form Liquid $-20 \pm 5^{\circ}C$ **Storage Conditions** 55.3 kDa **Molecular Weight**

Quality Control No residual exonucleases or endonucleases.

Shelf Life 24 months

Product Description

T4 DNA Ligase is an enzyme that catalyzes the formation of phosphodiester bonds between the 5'-P end of one DNA or RNA molecule and the 3'-OH end of another DNA or RNA molecule, either blunt-ended or sticky-ended. This catalytic reaction requires ATP as a cofactor. Additionally, T4 DNA Ligase can repair single-stranded nicks on double-stranded DNA, double-stranded RNA, or DNA/RNA hybrids. This product is suitable for connecting restriction enzyme-digested fragments, linkers, or adapters, as well as for nick repair and Ligase-mediated RNA detection.

Product components

Component No.	Component Name		Specifications	
1	T4 DNA ligase (400U/μL)	40KU	80KU	400KU
2	10× T4 DNA Ligase Buffer	300μL	600μL	1.5mL*2

Operating instructions

1. Prepare the following reaction system in a sterile microcentrifuge tube

Composition	Usage		
ddH2O	Up to 20 μL		
10× T4 DNA Ligase Buffer	2 μL		
T4 DNA ligase (400U/μL)	1 μL		
Vector DNA	Approximately 50-100 ng		
Insert fragment	Approximately 3 times the molar amount of the vector		

Note:

When connecting the blunt-ended vector with DNA fragments, the vector should be dephosphorylated first to prevent self-ligation. To improve ligation efficiency, 2 µL of 50% PEG 4000 can be added to every $20~\mu L$ reaction system.

Perform the reaction overnight at 16°C. 2.

3. **Transformation Experiment:**

- (1) Add the ligation product to $100 \mu L$ of competent cells (the amount of ligation product should not exceed 1/10 of the competent cells) Gently mix by flicking and incubate on ice for 30 minutes.
- (2) Heat shock at 42°C for 90 seconds, then immediately place on ice for 2-3 minutes.
- (3) Add 900 μL of LB or SOC medium to the centrifuge tube and shake at 37°C and 220 rpm for 1 hour.

(4) Centrifuge at 2500g for 5 minutes, remove 900 μL of supernatant, resuspend the pellet in the remaining medium, and evenly spread the remaining cells on an appropriate antibiotic-resistant agar plate using a sterile spreader Invert the plate and incubate at 37°C overnight.